Imágenes de páginas
PDF
EPUB

of the oblique motion of the moon into two separate motions, by Eudoxus, was not the simplest way of conceiving it; and Calippus imagined the connection of these spheres in some way which made it necessary nearly to double their number; in this manner his system had no less than 55 spheres.

Such was the progress which the Idea of the hypothesis of epicycles had made in men's minds, previously to the establishment of the theory by Hipparchus. There had also been a preparation for this step, on the other side, by the collection of Facts. We know that observations of the Eclipses of the Moon were made by the Chaldeans 367 B. c. at Babylon, and were known to the Greeks; for Hipparchus and Ptolemy founded their Theory of the Moon on these observations. Perhaps we cannot consider, as equally certain, the story that, at the time of Alexander's conquest, the Chaldeans possessed a series of observations, which went back 1903 years, and which Aristotle caused Callisthenes to bring to him in Greece. All the Greek observations which are of any value, begin with the school of Alexandria. Aristyllus and Timocharis appear, by the citations of Hipparchus, to have observed the Places of Stars and Planets, and the Times of the Solstices, at various periods from B. c. 295 to в. c. 269. Without their observations, indeed, it would not have been easy for Hipparchus to establish either the Theory of the Sun or the Precession of the Equi

noxes.

In order that observations at distant intervals may be compared with each other, they must be referred to some common era. The Chaldeans dated by the era of Nabonassar, which commenced 749 B. C. The Greek observations were referred to the Calippic periods of 76 years, of which the first began 331 B. c. These are the dates used by Hipparchus and Ptolemy.

A

CHAPTER III.

INDUCTIVE EPOCH OF HIPPARCHUS.

Sect. 1.-Establishment of the Theory of Epicycles and Eccentrics.

LTHOUGH, as we have already seen, at the time of Plato, the Idea of Epicycles had been suggested, and the problem of its general application proposed, and solutions of this problem offered by his followers; we still consider Hipparchus as the real discoverer and founder of that theory; inasmuch as he not only guessed that it might, but showed that it must, account for the phenomena, both as to their nature and as to their quantity. The assertion that "he only discovers who proves," is just; not only because, until a theory is proved to be the true one, it has no pre-eminence over the numerous other guesses among which it circulates, and above which the proof alone elevates it; but also because he who takes hold of the theory so as to apply calculation to it, possesses it with a distinctness of conception which makes it peculiarly his.

In order to establish the Theory of Epicycles, it was necessary to assign the magnitudes, distances, and positions of the circles or spheres in which the heavenly bodies were moved, in such a manner as to account for their apparently irregular motions. We may best understand what was the problem to be solved, by calling to mind what we now know to be the real motions of the heavens. The true motion of the earth round the sun, and therefore the apparent annual motion of the sun, is performed, not in a circle of which the earth is the centre, but in an ellipse or oval, the earth being nearer to one end than to the other; and the motion is most rapid when the sun is at the nearer end of this oval. But instead of an oval, we may suppose the sun to move uniformly in a circle, the earth being now, not in the centre, but nearer to one side; for on this supposition, the sun will appear to move most quickly when he is nearest to the earth, or in his Perigee, as that point is called. Such an orbit is called an Eccentric, and the distance of the earth from the centre of the circle is called the Eccentricity. It may easily be shown by geometrical reasoning, that the inequality of apparent motion so produced, is exactly the same in

VOL. I.-10

detail, as the inequality which follows from the hypothesis of a smal Epicycle, turning uniformly on its axis, and carrying the sun in its circumference, while the centre of this epicycle moves uniformly in a circle of which the earth is the centre. This identity of the results of the hypothesis of the Eccentric and the Epicycle is proved by Ptolemy in the third book of the "Almagest."

The Sun's Eccentric.-When Hipparchus had clearly conceived these hypotheses, possible ways of accounting for the sun's motion, the task which he had to perform, in order to show that they deserved to be adopted, was to assign a place to the Perigee, a magnitude to the Eccentricity, and an Epoch at which the sun was at the perigee; and to show that, in this way, he had produced a true representation of the motions of the sun. This, accordingly, he did; and having thus determined, with considerable exactness, both the law of the solar irregularities, and the numbers on which their amount depends, he was able to assign the motions and places of the sun for any moment of future time with corresponding exactness; he was able, in short, to construct Solar Tables, by means of which the sun's place with respect to the stars could be correctly found at any time. These tables (as they are given by Ptolemy)' give the Anomaly, or inequality of the sun's motion; and this they exhibit by means of the Prosthapheresis, the quantity of which, at any distance of the sun from the Apogee, it is requisite to add to or subtract from the arc, which he would have described if his motion had been equable.

The reader might perhaps expect that the calculations which thus exhibited the motions of the sun for an indefinite future period must depend upon a considerable number of observations made at all seasons of the year. That, however, was not the case; and the genius of the discoverer appeared, as such genius usually does appear, in his perceiv ing how small a number of facts, rightly considered, were sufficient to form a foundation for the theory. The number of days contained in two seasons of the year sufficed for this purpose to Hipparchus. "Having ascertained," says Ptolemy, "that the time from the vernal equinox to the summer tropic is 94 days, and the time from the summer tropic to the autumnal equinox 924 days, from these phenomena alone he demonstrates that the straight line joining the centre of the sun's eccentric path with the centre of the zodiac (the spectator's eye) is nearly the 24th part of the radius of the eccentric path; and that

1 Syntax. 1. iii.

its apogee precedes the summer solstice by 24 degrees nearly, the zodiac containing 360."

The exactness of the Solar Tables, or Canon, which was founded on these data, was manifested, not only by the coincidence of the sun's calculated place with such observations as the Greek astronomers of this period were able to make (which were indeed very rude), but by its enabling them to calculate solar and lunar eclipses; phenomena which are a very precise and severe trial of the accuracy of such tables, inasmuch as a very minute change in the apparent place of the sun or moon would completely alter the obvious features of the eclipse. Though the tables of this period were by no means perfect, they bore with tolerable credit this trying and perpetually recurring test; and thus proved the soundness of the theory on which the tables were calculated. The Moon's Eccentric.-The moon's motions have many irregularities; but when the hypothesis of an Eccentric or an Epicycle had sufficed in the case of the sun, it was natural to try to explain, in the same way, the motions of the moon; and it was shown by Hipparchus that such hypotheses would account for the more obvious anomalies. It is not very easy to describe the several ways in which these hypotheses were applied, for it is, in truth, very difficult to explain in words even the mere facts of the moon's motion. If she were to leave a visible bright line behind her in the heavens wherever she moved, the path thus exhibited would be of an extremely complex nature; the circle of each revolution slipping away from the preceding, and the traces of successive revolutions forming a sort of band of net-work running round the middle of the sky. In each revolution, the motion in longitude is affected by an anomaly of the same nature as the sun's anomaly already spoken of; but besides this, the path of the moon deviates from the ecliptic to the north and to the south of the ecliptic, and thus she has a motion in latitude. This motion in latitude would be sufficiently known if we knew the period of its restoration, that is, the time which the moon occupies in moving from any latitude till she is restored to the same latitude; as, for instance, from the ecliptic on one side of the heavens to the ecliptic on the same side of the heavens again. But it is found that the period of the restoration of the latitude is not the same as the period of the restoration of the longitude, that is, as the period of the moon's revolution among the

The reader will find an attempt to make the nature of this path generally intelligible in the Companion to the British Almanac for 1814.

stars; and thus the moon describes a different path among the stars in every successive revolution, and her path, as well as her velocity, is constantly variable.

Hipparchus, however, reduced the motions of the moon to rule and to Tables, as he did those of the sun, and in the same manner. He determined, with much greater accuracy than any preceding astronomer, the mean or average equable motions of the moon in longitude and in latitude; and he then represented the anomaly of the motion in longitude by means of an eccentric, in the same manner as he had done for the sun.

But here there occurred still an additional change, besides those of which we have spoken. The Apogee of the Sun was always in the same place in the heavens; or at least so nearly so, that Ptolemy could detect no error in the place assigned to it by Hipparchus 250 years before. But the Apogee of the Moon was found to have a motion among the stars. It had been observed before the time of Hipparchus, that in 6585 days, there are 241 revolutions of the moon with regard to the stars, but only 239 revolutions with regard to the anomaly. This difference could be suitably represented by supposing the eccentric, in which the moon moves, to have itself an angular motion, perpetually carrying its apogee in the same direction in which the moon travels; but this supposition being made, it was necessary to determine, not only the eccentricity of the orbit, and place of the apogee at a certain time, but also the rate of motion of the apogee itself, in order to form tables of the moon.

This task, as we have said, Hipparchus executed; and in this instance, as in the problem of the reduction of the sun's motion to tables, the data which he found it necessary to employ were very few. He deduced all his conclusions from six eclipses of the moon. Three of these, the records of which were brought from Babylon, where a register of such occurrences was kept, happened in the 366th and 367th years from the era of Nabonassar, and enabled Hipparchus to determine the eccentricity and apogee of the moon's orbit at that time. The three others were observed at Alexandria, in the 547th year of Nabonassar, which gave him another position of the orbit at an interval of 180 years; and he thus became acquainted with the motion of the orbit itself, as well as its form.*

Ptol. Syn. iv. 10.

Ptolemy uses the hypothesis of an epycicle for the moon's first inequality; but Hipparchus employs an eccentric.

« AnteriorContinuar »