Imágenes de páginas
PDF
EPUB

The moon's motions are really affected by several other inequalities, of very considerable amount, besides those which were thus considered by Hipparchus; but the lunar paths, constructed on the above data, possessed a considerable degree of correctness, and especially when applied, as they were principally, to the calculation of eclipses; for the greatest of the additional irregularities which we have mentioned disappear at new and full moon, which are the only times when eclipses take place.

The numerical explanation of the motions of the sun and moon, by means of the Hypothesis of Eccentrics, and the consequent construction of tables, was one of the great achievements of Hipparchus. The general explanation of the motions of the planets, by means of the hypothesis But the of epicycles, was in circulation previously, as we have seen. special motions of the planets, in their epicycles, are, in reality, affected by anomalies of the same kind as those which render it necessary to introduce eccentrics in the cases of the sun and moon.

Hipparchus determined, with great exactness, the Mean Motions of the Planets; but he was not able, from want of data, to explain the planetary Irregularities by means of Eccentrics. The whole mass of good observations of the planets which he received from preceding ages, did not contain so many, says Ptolemy, as those which he has transmitted to us of his own. "Hence it was," he adds, "that while he labored, in the most assiduous manner to represent the motions of the sun and moon by means of equable circular motions; with respect to the planets, so far as his works show, he did not even make the attempt, but merely put the extant observations in order, added to them himself more than the whole of what he received from preceding ages, and showed the insufficiency of the hypothesis current among astronomers to explain the phenomena." It appears that preceding mathematicians had already pretended to construct "a Perpetual Canon," that is, Tables which should give the places of the planets at any future time; but these being constructed without regard to the eccentricity of the orbits, must have been very erroneous.

Ptolemy declares, with great reason, that Hipparchus showed his usual love of truth, and his right sense of the responsibility of his task, in leaving this part of it to future ages. The Theories of the Sun and Moon, which we have already described, constitute him a great astronomical discoverer, and justify the reputation he has always

Synt. ix. 2.

possessed. There is, indeed, no philosopher who is so uniformly spoken of in terms of admiration. Ptolemy, to whom we owe our principal knowledge of him, perpetually couples with his name epithets of praise he is not only an excellent and careful observer, but “a most truth-loving and labor-loving person," one who had shown extraordinary sagacity and remarkable desire of truth in every part of science. Pliny, after mentioning him and Thales, breaks out into one of his passages of declamatory vehemence: "Great men! elevated above the common standard of human nature, by discovering the laws which celestial occurrences obey, and by freeing the wretched mind of man from the fears which eclipses inspired-Hail to you and to your genius, interpreters of heaven, worthy recipients of the laws of the universe, authors of principles which connect gods and men !" Modern writers have spoken of Hipparchus with the same admiration; and even the exact but severe historian of astronomy, Delambre, who bestows his praise so sparingly, and his sarcasm so generally;-who says' that it is unfortunate for the memory of Aristarchus that his work has come to us entire, and who cannot refer to the statement of an eclipse rightly predicted by Halicon of Cyzicus without adding, that if the story be true, Halicon was more lucky than prudent;--loses all his bitterness when he comes to Hipparchus." "In Hipparchus," says he, "we find one of the most extraordinary men of antiquity; the very greatest, in the sciences which require a combination of observation with geometry." Delambre adds, apparently in the wish to reconcile this eulogium with the depreciating manner in which he habitually speaks of all astronomers whose observations are inexact," a long period and the continued efforts of many industrious men are requisite to produce good instruments, but energy and assiduity depend on the man himself."

Hipparchus was the author of other great discoveries and improvements in astronomy, besides the establishment of the Doctrine of Eccentrics and Epicycles; but this, being the greatest advance in the theory of the celestial motions which was made by the ancients, must be the leading subject of our attention in the present work; our object being to discover in what the progress of real theoretical knowledge consists, and under what circumstances it has gone on.

• Syn. ix. 2.

8 Ib. i. 17.

Astronomie Ancienne, i. 75.
Ib. i. 186.

Sect. 2.-Estimate of the Value of the Theory of Eccentrics and

Epicycles.

Ir may be useful here to explain the value of the theoretical step which Hipparchus thus made; and the more so, as there are, perhaps, opinions in popular circulation, which might lead men to think lightly of the merit of introducing or establishing the Doctrine of Epicycles. For, in the first place, this doctrine is now acknowledged to be false; and some of the greatest men in the more modern history of astronomy owe the brightest part of their fame to their having been instrumental in overturning this hypothesis. And, moreover, in the next place, the theory is not only false, but extremely perplexed and entangled, so that it is usually looked upon as a mass of arbitrary and absurd complication. Most persons are familiar with passages in which it is thus spoken of."

[ocr errors][merged small]

And every one will recollect the celebrated saying of Alphonso X., king of Castile," when this complex system was explained to him; that "if God had consulted him at the creation, the universe should have been on a better and simpler plan." In addition to this, the system is represented as involving an extravagant conception of the nature of the orbs which it introduces; that they are crystalline spheres, and that the vast spaces which intervene between the celestial luminaries are a solid mass, formed by the fiting togeth of many masses perpetually in motion; an imaginatio which is med to be incredible

and monstrous.

We must endeavor to correct or remove these prejudices, not only in order that we may do justice to the Hipparchian, or, as it is usually called, Ptolemaic system of astronomy, and to its founder; but for another reason, much more important to the purpose of this work;

[blocks in formation]

namely, that we may see how theories may be highly estimable, though they contain false representations of the real state of things, and may be extremely useful, though they involve unnecessary complexity. In the advance of knowledge, the value of the true part of a theory may much outweigh the accompanying error, and the use of a rule may be little impaired by its want of simplicity. The first steps of our progress do not lose their importance because they are not the last; and the outset of the journey may require no less vigor and activity than its close.

That which is true in the Hipparchian theory, and which no succeeding discoveries have deprived of its value, is the Resolution of the apparent motions of the heavenly bodies into an assemblage of circular motions. The test of the truth and reality of this Resolution is, that it leads to the construction of theoretical Tables of the motions of the luminaries, by which their places are given at any time, agreeing nearly with their places as actually observed. The assumption that these circular motions, thus introduced, are all exactly uniform, is the fundamental principle of the whole process. This assumption is, it may be said, false; and we have seen how fantastic some of the arguments were, which were originally urged in its favor. But some assumption is necessary, in order that the motions, at different points of a revolution, may be somehow connected, that is, in order that we may have any theory of the motions; and no assumption more simple than the one now mentioned can be selected. The merit of the theory is this; -that obtaining the amount of the eccentricity, the place of the apogee, and, it may be, other elements, from a few observations, it deduces from these, results agreeing with all observations, however numerous and distant. To express an inequality by means of an epicycle, implies, not only that there is an inequality, but further, that the inequality is at its greatest value at a certain known place,-diminishes in proceeding from that place by a known law, continues its diminution for a known portion of the revolution of the luminary,then increases again; and so on: that is, the introduction of the epicycle represents the inequality of motion, as completely as it can be represented with respect to its quantity.

We may further illustrate this, by remarking that such a Resolution of the unequal motions of the heavenly bodies into equable circular motions, is, in fact, equivalent to the most recent and improved processes by which modern astronomers deal with such motions. Their universal method is to resolve all unequal motions into a series of

terms, or expressions of partial motions; and these terms involve sines and cosines, that is, certain technical modes of measuring circular mo. tion, the circular motion having some constant relation to the time. And thus the problem of the resolution of the celestial motions into equable circular ones, which was propounded above two thousand years ago in the school of Plato, is still the great object of the study of modern astronomers, whether observers or calculators.

That Hipparchus should have succeeded in the first great steps of this resolution for the sun and moon, and should have seen its applicability in other cases, is a circumstance which gives him one of the most distinguished places in the roll of great astronomers. As to the charges or the sneers against the complexity of his system, to which we have referred, it is easy to see that they are of no force. As a system of calculation, his is not only good, but, as we have just said, in many cases no better has yet been discovered. If, when the actual motions of the heavens are calculated in the best possible way, the process is complex and difficult, and if we are discontented at this, nature, and not the astronomer, must be the object of our displeasure. This plea of the astronomers must be allowed to be reasonable. "We must not be repelled," says Ptolemy," "by the complexity of the hypotheses, but explain the phenomena as well as we can. If the hypotheses satisfy each apparent inequality separately, the combination of them will represent the truth; and why should it appear wonderful to any that such a complexity should exist in the heavens, when we know nothing of their nature which entitles us to suppose that any inconsistency will result?"

But it may be said, we now know that the motions are more simple than they were thus represented, and that the Theory of Epicycles was false, as a conception of the real construction of the heavens. And to this we may reply, that it does not appear that the best astronomers of antiquity conceived the cycles and epicycles to have a material existence. Though the dogmatic philosophers, as the Aristotelians, appear to have taught that the celestial spheres were real solid bodies, they are spoken of by Ptolemy as imaginary ; and it is clear, from his proof of the identity of the results of the hypothesis of an eccentric and an epicycle, that they are intended to pass for no more than geometrical conceptions, in which view they are true representations of the apparent motions.

[blocks in formation]
« AnteriorContinuar »