Imágenes de páginas
PDF
EPUB

in proportion as it was supported by the authority of all philosophers, and apparently agreeable to metaphysics." But before he attempts to correct this erroneous part of his hypothesis, he sets about discovering the law according to which the different parts of the orbit are described in the case of the earth, in which case the eccentricity is so small that the effect of the oval form is insensible. The result of this inquiry was", the Rule, that the time of describing any arc of the orbit is proportional to the area intercepted between the curve and two lines drawn from the sun to the extremities of the arc. It is to be observed that this rule, at first, though it had the recommendation of being selected after the unavoidable abandonment of many, which were suggested by the notions of those times, was far from being adopted upon any very rigid or cautious grounds. A rule had been proved at the apsides of the orbit, by calculation from observations, and had then been extended by conjecture to other parts of the orbit; and the rule of the areas was only an approximate and inaccurate mode of representing this rule, employed for the purpose of brevity and convenience, in consequence of the difficulty of applying, geometrically, that which Kepler now conceived to be the true rule, and which required him to find the sum of the lines drawn from the sun to every point of the orbit. When he proceeded to apply this rule to Mars, in whose orbit the oval form is much more marked, additional difficulties came in his way; and here again the true supposition, that the oval is of that special kind called ellipse, was adopted at first only in order to simplify calculation,* and the deviation from exactness in the result was attributed to the inaccuracy of those approximate processes. The supposition of the oval had already been forced upon Purbach in the case of Mercury, and upon Reinhold in the case of the Moon. The centre of the epicycle was made to describe an egg-shaped figure in the former case, and a lenticular figure in the latter.10

It may serve to show the kind of labor by which Kepler was led to his result, if we here enumerate, as he does in his forty-seventh Chapter," six hypotheses, on which he calculated the longitude of Mars, in order to see which best agreed with observation.

1. The simple eccentricity.

2. The bisection of the eccentricity, and the duplication of the superior part of the equation.

De Stella Martis, p. 194. 10 L. U. K. Kepler, p. 80.

Ib. iv. c. 47.

11 De Stella Martis, p. 228.

3. The bisection of the eccentricity, and a stationary point of equations, after the manner of Ptolemy.

4. The vicarious hypothesis by a free section of the eccentricity made to agree as nearly as possible with the truth.

5. The physical hypothesis on the supposition of a perfect circle. 6. The physical hypothesis on the supposition of a perfect ellipse. By the physical hypothesis, he meant the doctrine that the time of a planet's describing any part of its orbit is proportional to the distance of the planet from the sun, for which supposition, as we have said, he conceived that he had assigned physical reasons.

The two last hypotheses came the nearest to the truth, and differed from it only by about eight minutes, the one in excess and the other in defect. And, after being much perplexed by this remaining error, it at last occurred to him' that he might take another ellipsis, exactly intermediate between the former one and the circle, and that this must give the path and the motion of the planet. Making this assumption, and taking the areas to represent the times, he now saw13 that both the longitude and the distances of Mars would agree with observation to the requisite degree of accuracy. The rectification of the former hypothesis, when thus stated, may, perhaps, appear obvious. And Kepler informs us that he had nearly been anticipated in this step (c. 55). "David Fabricius, to whom I had communicated my hypothesis of cap. 45, was able, by his observations, to show that it erred in making the distances too short at mean longitudes; of which he informed me by letter while I was laboring, by repeated efforts, to discover the true hypothesis. So nearly did he get the start of me in detecting the truth." But this was less easy than it might seem. When Kepler's first hypothesis was enveloped in the complex construction requisite in order to apply it to each point of the orbit, it was far more difficult to see where the error lay, and Kepler hit upon it only by noticing the coincidences of certain numbers, which, as he says, raised him as if from sleep, and gave him a new light. We may observe, also, that he was perplexed to reconcile this new view, according to which the planet described an exact ellipse, with his former opinion, which represented the motion by means of libration in an epicycle. "This," he says, "was my greatest trouble, that, though I considered and reflected till I was almost mad, I could not find why the planet to which, with so much probability, and with such an exact

12 De Stella Martis, c. 58.

13 Ibid. p. 285.

accordance of the distances, libration in the diameter of the epicycle was attributed, should, according to the indication of the equations, go in an elliptical path. What an absurdity on my part! as if libration in the diameter might not be a way to the ellipse!"

Another scruple respecting this theory arose from the impossibility of solving, by any geometrical construction, the problem to which Kepler was thus led, namely, "To divide the area of a semicircle in a given ratio, by a line drawn from any point of the diameter." This is still termed "Kepler's Problem," and is, in fact, incapable of exact geometrical solution. As, however, the calculation can be performed, and, indeed, was performed by Kepler himself, with a sufficient degree of accuracy to show that the elliptical hypothesis is true, the insolubility of this problem is a mere mathematical difficulty in the deductive process, to which Kepler's induction gave rise.

Of Kepler's physical reasonings we shall speak more at length on another occasion. His numerous and fanciful hypotheses had discharged their office, when they had suggested to him his many lines of laborious calculation, and encouraged him under the exertions and disappointments to which these led. The result of this work was the formal laws of the motion of Mars, established by a clear induction, since they represented, with sufficient accuracy, the best observations. And we may allow that Kepler was entitled to the praise which he claims in the motto on his first leaf. Ramus had said that if any one would construct an astronomy without hypothesis, he would be ready to resign to him his professorship in the University of Paris. Kepler quotes this passage, and adds, “it is well, Ramus, that you have run from this pledge, by quitting life and your professorship;" if you held it still, I should, with justice, claim it." This was not saying too much, since he had entirely overturned the hypothesis of eccentrics and epicycles, and had obtained a theory which was a mere representation of the motions and distances as they were observed.

14 Ramus perished in the Massacre of St. Bartholomew.

CHAPTER V.

SEQUEL TO THE EPOCH OF KEPLER. RECEPTION, VERIFICATION, AND EXTENSION OF THE ELLIPTICAL THEORY.

T

Sect. 1.-Application of the Elliptical Theory to the Planets.

THE extension of Kepler's discoveries concerning the orbit of Mars to the other planets, obviously offered itself as a strong probability, and was confirmed by trial. This was made in the first place upon the orbit of Mercury; which planet, in consequence of the largeness of its eccentricity, exhibits more clearly than the others the circumstances of the elliptical motion. These and various other supplementary portions of the views to which Kepler's discoveries had led, appeared in the latter part of his Epitome Astronomia Copernicana, published in 1622.

The real verification of the new doctrine concerning the orbits and motions of the heavenly bodies was, of course, to be found in the construction of tables of those motions, and in the continued comparison of such tables with observation. Kepler's discoveries had been founded, as we have seen, principally on Tycho's observations. Longomontanus (so called as being a native of Langberg in Denmark), published in 1621, in his Astronomia Danica, tables founded upon the theories as well as the observations of his countryman. Kepler' in 1627 published his tables of the planets, which he called Rudolphine Tables, the result and application of his own theory. In 1633, Lansberg, a Belgian, published also Tabula Perpetuæ, a work which was ushered into the world with considerable pomp and pretension, and in which the author cavils very keenly at Kepler and Brahe. We may judge of the impression made upon the astronomical world in general by these rival works, from the account which our countryman Jeremy Horrox has given of their effect on him. He had been seduced by the magnificent promises of Lansberg, and the praises of his admirers, which are prefixed to the work, and was persuaded that the common opinion which preferred Tycho and Kepler to him was a prejudice. In 1636, however, he became acquainted with Crabtree, another young astrono

1 Rheticus, Narratio, p. 98.

mer, who lived in the same part of Lancashire. By him Horrox was warned that Lansberg was not to be depended on; that his hypotheses were vicious, and his observations falsified or forced into agreement with his theories. He then read the works and adopted the opinions of Kepler; and after some hesitation which he felt at the thought of attacking the object of his former idolatry, he wrote a dissertation on the points of difference between them. It appears that, at one time, he intended to offer himself as the umpire who was to adjudge the prize of excellence among the three rival theories of Longomontanus, Kepler, and Lansberg; and, in allusion to the story of ancient mythology, his work was to have been called Paris Astronomicus; we easily see that he would have given the golden apple to the Keplerian goddess. Succeeding observations confirmed his judgment: and the Rudolphine Tables, thus published seventy-six years after the Prutenic, which were founded on the doctrines of Copernicus, were for a long time those universally used.

Sect. 2.-Application of the Elliptical Theory to the Moon.

THE reduction of the Moon's motions to rule was a harder task than the formation of planetary tables, if accuracy was required; for the Moon's motion is affected by an incredible number of different and complex inequalities, which, till their law is detected, appear to defy all theory. Still, however, progress was made in this work. The most important advances were due to Tycho Brahe. In addition to the first and second inequalities of the moon (the Equation of the Centre, known very early, and the Evection, which Ptolemy had discovered), Tycho proved that there was another inequality, which he termed the Variation, which depended on the moon's position with respect to the sun, and which at its maximum was forty minutes and a half, about a quarter of the evection. He also perceived, though not very distinctly, the necessity of another correction of the moon's place depending on the sun's longitude, which has since been termed the Annual Equation.

These steps concerned the Longitude of the Moon; Tycho also made important advances in the knowledge of the Latitude. The Inclination of the Orbit had hitherto been assumed to be the same at all

We have seen (chap. iii.), that Aboul-Wefa, in the tenth century, had already noticed this inequality; but his discovery had been entirely forgotten long before the time of Tycho, and has only recently been brought again into notice.

« AnteriorContinuar »