Imágenes de páginas
PDF
EPUB

Hooke and others showed that, by diminishing the obvious resistances, the retardation also became less; and men were gradually led to a distinct appreciation of the Resistance, Friction, &c., which, in all terrestrial motions, prevent the Law from being evident; and thus they at last established by experiment a Law which cannot be experimentally exemplified. The natural uniformity of motion was proved by examining all kinds of cases in which motion was not uniform. Men culled the abstract Rule out of the concrete Experiment; although the Rule was, in every case, mixed with other Rules, and each Rule could be collected from the Experiment only by supposing the others known. The perfect simplicity which we necessarily seek for in a law of nature, enables us to disentangle the complexity which this combination appears at first sight to occasion.

The First Law of Motion asserts that the motion of a body, when left to itself, will not only be uniform, but rectilinear also. This latter part of the law is indeed obvious of itself, as soon as we conceive a body detached from all special reference to external points and objects. Yet, as we have seen, Galileo asserted that the naturally uniform motion of bodies was that which takes place in a circle. Benedetti, however, in 1585, had entertained sound notions on this subject. In commenting on Aristotle's question, why we obtain an advantage in throwing by using a sling, he says, that the body, when whirled round, tends to go on in a straight line. In Galileo's second Dialogue, he makes one of his interlocutors (Simplicio), when appealed to on this subject, after thinking intently for a little while, give the same opinion; and the principle is, from this time, taken for granted by the authors who treat of the motion of projectiles. Descartes, as might be supposed, gives the same reason for this as for the other part of the law, namely, the immutability of the Deity.

Sect. 2.—Formation and Application of the Notion of Accelerating Force.-Laws of Falling Bodies.

We have seen how rude and vague were the attempts of Aristotle and his followers to obtain a philosophy of bodies falling downwards or thrown in any direction. If the First Law of Motion had been clearly known, it would then, perhaps, have been seen that the to way understand and analyze the motion of any body, is to consider the

4 "Corpus vellet recta iter peragere." Speculationum Liber, p. 160.

Causes of change of motion which at each instant operate upon it; and thus men would have been led to the notion of Accelerating Forces, that is, Forces which act upon bodies already in motion, and accelerate, retard, or deflect their motions. It was, however, only after many attempts that they reached this point. They began by considering the whole motion with reference to certain ill-defined abstract Notions, instead of considering, with a clear apprehension of the conditions of Causation, the successive parts of which the motion consists. Thus, they spoke of the tendency of bodies to the Centre, or to their Own Place; of Projecting Force, of Impetus, of Retraction ;-with little or no profit to knowledge. The indistinctness of their notions may, perhaps, be judged of from their speculations concerning projectiles. Santbach,' in 1561, imagined that a body thrown with great velocity, as, for instance, a ball from a cannon, went in a straight line till all its velocity was exhausted, and then fell directly downwards. He has written a treatise on gunnery, founded on this absurd assumption. To this succeeded another doctrine, which, though not much more philosophical than the former, agreed much better with the phenomena. Nicolo Tartalea (Nuova Scienza, Venice, 1550; Quesiti et Inventioni Diversi, 1554) and Gualtier Rivius (Architectura, &c., Basil, 1582) represented the path of a cannon-ball as consisting, first of a straight line in the direction of the original projection, then of an arc of a circle in which it went on till its motion became vertical downwards, and then of a vertical line in which it continued to fall. The latter of these writers, however, was aware that the path must, from the first, be a curve; and treated it as a straight line, only because the curvature is very slight. Even Santbach's figure represents the path of the ball as partially descending before its final fall, but then it descends by steps, not in a curve. Santbach, therefore, did not conceive the Composition of the effect of gravity with the existing motion, but supposed them to act alternately; Rivius, however, understood this Composition, and saw that gravity must act as a deflecting force at every point of the path. Galileo, in his second Dialogue, makes Simplicius come to the same conclusion. "Since," he says, "there is nothing to support the body, when it quits that which projects it, it cannot be but that its proper gravity must operate," and it must immediately begin to decline downwards.

6

• Problematum Astronomicorum et Geometricorum Sectiones vii. &c. &c. Auctore Daniele Santbach, Noviomago. Basileæ, 1561. • P. 147.

The Force of Gravity which thus produces deflection and curvature in the path of a body thrown obliquely, constantly increases the velocity of a body when it falls vertically downwards. The universality of this increase was obvious, both from reasoning and in fact; the law of it could only be discovered by closer consideration; and the full analysis of the problem required a distinct measure of the quantity of Accelerating Force. Galileo, who first solved this problem, began by viewing it as a question of fact, but conjectured the solution by taking for granted that the rule must be the simplest possible. "Bodies," he says,' ,7" will fall in the most simple way, because Natural Motions are always the most simple. When a stone falls, if we consider the matter attentively, we shall find that there is no addition, no increase, of the velocity more simple than that which is always added in the same manner," that is, when equal additions take place in equal times; "which we shall easily understand if we attend to the close connection of motion and time." From this Law, thus assumed, he deduced that the spaces described from the beginning of the motion must be as the squares of the times; and, again, assuming that the laws of descent for balls rolling down inclined planes, must be the same as for bodies falling freely, he verified this conclusion by experiment.

It will, perhaps, occur to the reader that this argument, from the simplicity of the assumed law, is somewhat insecure. It is not always easy for us to discern what that greatest simplicity is, which nature adopts in her laws. Accordingly, Galileo was led wrong by this way of viewing the subject before he was led right. He at first supposed, that the Velocity which the body had acquired at any point must be proportional to the Space described from the point where the motion began. This false law is as simple in its enunciation as the true law, that the Velocity is proportional to the Time: it had been asserted as the true law by M. Varro (De Motu Tractatus, Genevæ, 1584), and by Baliani, a gentleman of Genoa, who published it in 1638. It was, however, soon rejected by Galileo, though it was afterwards taken up and defended by Casræus, one of Galileo's opponents. It so happens, indeed, that the false law is not only at variance with fact, but with itself: it involves a mathematical self-contradiction. This circumstance, however, was accidental: it would be easy to state laws of the increase of velocity which should be simple, and yet false in fact, though quite possible in their own nature.

Dial. Sc. iv. p. 91.

The Law of Velocity was hitherto, as we have seen, treated as a law of phenomena, without reference to the Causes of the law. "The cause of the acceleration of the motions of falling bodies is not," Galileo observes, "a necessary part of the investigation. Opinions are different. Some refer it to the approach to the centre; others say that there is a certain extension of the centrical medium, which, closing behind the body, pushes it forwards. For the present, it is enough for us to demonstrate certain properties of Accelerated Motion, the acceleration being according to the very simple Law, that the Velocity is proportional to the Time. And if we find that the properties of such motion are verified by the motions of bodies descending freely, we may suppose that the assumption agrees with the laws of bodies falling freely by the action of gravity."

118

It was, however, an easy step to conceive this acceleration as caused by the continual action of Gravity. This account had already been given by Benedetti, as we have seen. When it was once adopted, Gravity was considered as a constant or uniform force; on this point, indeed, the adherents of the law of Galileo and of that of Casræus were agreed; but the question was, what is a Uniform Force? The answer which Galileo was led to give was obviously this;-that is a Uniform Force which generates equal velocities in equal successive times; and this principle leads at once to the doctrine, that Forces are to be compared by comparing the Velocities generated by them in equal times.

Though, however, this was a consequence of the rule by which Gravity is represented as a Uniform Force, the subject presents some difficulty at first sight. It is not immediately obvious that we may thus measure forces by the Velocity added in a given time, without taking into account the velocity they have already. If we communicate velocity to a body by the hand or by a spring, the effect we produce in a second of time is lessened, when the body has already a velocity which withdraws it from the pressure of the agent. But it appears that this is not so in the case of gravity; the velocity added in one second is the same, whatever downward motion the body already possesses. A body falling from rest acquires a velocity, in one second, of thirty-two feet; and if a cannon-ball were shot downwards with a velocity of 1000 feet a second, it would equally, at the end of one second, have received an accession of 32 feet to its velocity. This conception of Gravity as a Uniform Force,-as constantly and

8 Gal. Op. iii. 91, 92.

equally increasing the velocity of a descending body,—will become clear by a little attention; but it undoubtedly presents difficulty at first. Accordingly, we find that Descartes did not accept it. "It is certain," he says, "that a stone is not equally disposed to receive a new motion or increase of velocity when it is already moving very quickly, and when it is moving slowly."

Descartes showed, by other expressions, that he had not caught hold of the true notion of accelerating force. Thus, he says in a letter to Mersenne, "I am astonished at what you tell me, of having found, by experiment, that bodies thrown up in the air take neither more nor less time to rise than to fall again; and you will excuse me if I say that I look upon the experiment as a very difficult one to make accurately." Yet it is clear from the Notion of a Constant Force that (omitting the resistance of the air) this equality must take place; for the Force which will gradually destroy the whole velocity in a certain time in ascending, will, in the same time, generate again the same velocity by the same gradations inverted; and therefore the same space will be passed over in the same time in the descent and in the ascent.

Another difficulty arose from a necessary consequence of the Laws of Falling Bodies thus established;-the proposition, namely, that in acquiring its motion, a body passes through every intermediate degree of velocity, from the smallest conceivable, up to that which it at last acquires. When a body falls from rest, it begins to fall with no velocity; the velocity increases with the time; and in one-thousandth part of a second, the body has only acquired one-thousandth part of the velocity which it has at the end of one second.

This is certain, and manifest on consideration; yet there was at first much difficulty raised on the subject of this assertion; and disputes took place concerning the velocity with which a body begins to fall. On this subject also Descartes did not form clear notions. He writes to a correspondent, "I have been revising my notes on Galileo, in which I have not said expressly that falling bodies do not pass through every degree of slowness, but I said that this cannot be known without knowing what Weight is, which comes to the same thing; as to your example, I grant that it proves that every degree of velocity is infinitely divisible, but not that a falling body actually passes through all these divisions."

The Principles of the Motion of Falling Bodies being thus established by Galileo, the Deduction of the principal mathematical consequences was, as is usual, effected with great rapidity, and is to be found

« AnteriorContinuar »