Imágenes de páginas
PDF
EPUB

Percussion (1684), had asserted this proposition for the case of direct impact. But by the reasoners of Newton's time, the dynamical proposition, that the motion of the centre of gravity is not altered by the actual free motion and impact of bodies, was associated with the statical proposition, that when bodies are in equilibrium, the centre of gravity cannot be made to ascend or descend by the virtual motions of the bodies. This latter is a proposition which was assumed as selfevident by Torricelli; but which may more philosophically be proved from elementary statical principles.

This disposition to identify the elementary laws of equilibrium and of motion, led men to think too slightingly of the ancient solid and sufficient foundation of Statics, the doctrine of the lever. When the progress of thought had opened men's minds to a more general view of the subject, it was considered as a blemish in the science to found it on the properties of one particular machine. Descartes says in his Letters, that "it is ridiculous to prove the pulley by means of the lever." And Varignon was led by similar reflections to the project of his Nouvelle Mécanique, in which the whole of statics should be founded on the composition of forces. This project was published in 1687; but the work did not appear till 1725, after the death of the author. Though the attempt to reduce the equilibrium of all machines to the composition of forces, is philosophical and meritorious, the attempt to reduce the composition of Pressures to the composition of Motions, with which Varignon's work is occupied, was a retrograde step in the subject, so far as the progress of distinct mechanical ideas was concerned.

Thus, at the period at which we have now arrived, the Principles of Elementary Mechanics were generally known and accepted; and there was in the minds of mathematicians a prevalent tendency to reduce them to the most simple and comprehensive form of which they admitted. The execution of this simplification and extension, which we term the generalization of the laws, is so important an event, that though it forms part of the natural sequel of Galileo, we shall treat of it in a separate chapter. But we must first bring up the history of the mechanics of fluids to the corresponding point.

CHAPTER IV.

DISCOVERY OF THE MECHANICAL PRINCIPLES OF FLUIDS.

Sect. 1.-Rediscovery of the Laws of Equilibrium of Fluids.

WE

E have already said, that the true laws of the equilibrium of fluids were discovered by Archimedes, and rediscovered by Galileo and Stevinus; the intermediate time having been occupied by a vagueness and confusion of thought on physical subjects, which made it impossible for men to retain such clear views as Archimedes had disclosed. Stevinus must be considered as the earliest of the authors of this rediscovery; for his work (Principles of Statik and Hydrostatik) was published in Dutch about 1585; and in this, his views are perfectly distinct and correct. He restates the doctrines of Archimedes, and shows that, as a consequence of them, it follows that the pressure of a fluid on the bottom of a vessel may be much greater than the weight of the fluid itself: this he proves, by imagining some of the upper portions of the vessel to be filled with fixed solid bodies, which take the place of the fluid, and yet do not alter the pressure on the base. He also shows what will be the pressure on any portion of a base in an oblique position; and hence, by certain mathematical artifices which make an approach to the Infinitesimal Calculus, he finds the whole pressure on the base in such cases. This mode of treating the subject would take in a large portion of our elementary Hydrostatics as the science now stands. Galileo saw the properties of fluids no less clearly, and explained them very distinctly, in 1612, in his Discourse on Floating Bodies. It had been maintained by the Aristotelians, that form was the cause of bodies floating; and collaterally, that ice was condensed water; apparently from a confusion of thought between rigidity and density. Galileo asserted, on the contrary, that ice is rarefied water, as appears by its floating: and in support of this, he proved, by various experiments, that the floating of bodies does not depend on their form. The happy genius of Galileo is the more remarkable in this case, as the controversy was a good deal perplexed by the mixture of phenomena of another kind, due to what is usually called capillary or molecular attraction. Thus it is a fact, that a ball

of ebony sinks in water, while a flat slip of the same material lies on the surface; and it required considerable sagacity to separate such cases from the general rule. Galileo's opinions were attacked by various writers, as Nozzolini, Vincenzio di Grazia, Ludovico delle Colombe; and defended by his pupil Castelli, who published a reply in 1615. These opinions were generally adopted and diffused; but somewhat later, Pascal pursued the subject more systematically, and wrote his Treatise of the Equilibrium of Fluids, in 1653; in which he shows that a fluid, inclosed in a vessel, necessarily presses equally in all directions, by imagining two pistons, or sliding plugs, applied at different parts, the surface of one being centuple that of the other: it is clear, as he observes, that the force of one man acting at the first piston, will balance the force of one hundred men acting at the other. "And thus," says he, "it appears that a vessel full of water is a new Principle of Mechanics, and a new Machine which will multiply force to any degree we choose." Pascal also referred the equilibrium of fluids to the "principle of virtual velocities," which regulates the equilibrium of other machines. This, indeed, Galileo had done before him. It followed from this doctrine, that the pressure which is exercised by the lower parts of a fluid arises from the weight of the upper parts.

In all this there was nothing which was not easily assented to; but the extension of these doctrines to the air required an additional effort of mechanical conception. The pressure of the air on all sides of us, and its weight above us, were two truths which had never yet been apprehended with any kind of clearness. Seneca, indeed,' talks of the "gravity of the air," and of its power of diffusing itself when condensed, as the causes of wind; but we can hardly consider such propriety of phraseology in him as more than a chance; for we see the value of his philosophy by what he immediately adds: "Do you think that we have forces by which we move ourselves, and that the air is left without any power of moving? when even water has a motion of its own, as we see in the growth of plants." We can hardly attach much value to such a recognition of the gravity and elasticity of the air.

Yet the effects of these causes were so numerous and obvious, that the Aristotelians had been obliged to invent a principle to account for them; namely, "Nature's Horror of a Vacuum." To this principle were referred many familiar phenomena, as suction, breathing, the

Quæst. Nat. v. 5.

action of a pair of bellows, its drawing water if immersed in water, its refusing to open when the vent is stopped up. The action of a cupping instrument, in which the air is rarefied by fire; the fact that water is supported when a full inverted bottle is placed in a basin; or when a full tube, open below and closed above, is similarly placed; the running out of the water, in this instance, when the top is opened; the action of a siphon, of a syringe, of a pump; the adhesion of two polished plates, and other facts, were all explained by the fuga vacui. Indeed, we must contend that the principle was a very good one, inasmuch as it brought together all these facts which are really of the same kind, and referred them to a common cause. But when urged as an ultimate principle, it was not only unphilosophical, but imperfect and wrong. It was unphilosophical, because it introduced the notion of an emotion, Horror, as an account of physical facts; it was imperfect, because it was at best only a law of phenomena, not pointing out any physical cause; and it was wrong, because it gave an unlimited extent to the effect. Accordingly, it led to mistakes. Thus Mersenne, in 1644, speaks of a siphon which shall go over a mountain, being ignorant then that the effect of such an instrument was limited to a height of thirty-four feet. A few years later, however, he had detected this mistake; and in his third volume, published in 1647, he puts his siphon in his emendanda, and speaks correctly of the weight of air as supporting the mercury in the tube of Torricelli. It was, indeed, by finding this horror of a vacuum to have a limit at the height of thirty-four feet, that the true principle was suggested. It was discovered that when attempts were made to raise water higher than this, Nature tolerated a vacuum above the water which rose. In 1643, Torricelli tried to produce this vacuum at a smaller height, by using, instead of water, the heavier fluid, quicksilver; an attempt which shows that the true explanation, the balance of the weight of the water by another pressure, had already suggested itself. Indeed, this appears from other evidence. Galileo had already taught that the air has weight; and Baliani, writing to him in 1630, says, “If we were in a vacuum, the weight of the air above our heads would be felt." Descartes also appears to have some share in this discovery; for, in a letter of the date of 1631, he explains the suspension of mercury in a tube, closed at top, by the pressure of the column of air reaching to the clouds.

2 Drinkwater's Galileo, p. 90.

2

Still men's minds wanted confirmation in this view; and they found such confirmation, when, in 1647, Pascal showed practically, that if we alter the length of the superincumbent column of air by going to a high place, we alter the weight which it will support. This celebrated experiment was made by Pascal himself on a church-steeple in Paris, the column of mercury in the Torricellian tube being used to compare the weights of the air; but he wrote to his brother-in-law, who lived near the high mountain of Puy de Dôme in Auvergne, to request him to make the experiment there, where the result would be more decisive. "You see," he says, "that if it happens that the height of the mercury at the top of the hill be less than at the bottom (which I have many reasons to believe, though all those who have thought about it are of a different opinion), it will follow that the weight and pressure of the air are the sole cause of this suspension, and not the horror of a vacuum: since it is very certain that there is more air to weigh on it at the bottom than at the top; while we canthat nature abhors a vacuum at the foot of a mountain more than on its summit."-M. Perrier, Pascal's correspondent, made the observation as he had desired, and found a difference of three inches of mercury, "which," he says, "ravished us with admiration and astonishment."

not say

When the least obvious case of the operation of the pressure and weight of fluids had thus been made out, there were no further difficulties in the progress of the theory of Hydrostatics. When mathematicians began to consider more general cases than those of the action of gravity, there arose differences in the way of stating the appropriate principles: but none of these differences imply any different conception of the fundamental nature of fluid equilibrium.

Sect. 2.-Discovery of the Laws of Motion of Fluids.

THE art of conducting water in pipes, and of directing its motion. for various purposes, is very old. When treated systematically, it has been termed Hydraulics: but Hydrodynamics is the general name of the science of the laws of the motions of fluids, under those or other circumstances. The Art is as old as the commencement of civilization: the Science does not ascend higher than the time of Newton, though attempts on such subjects were made by Galileo and his scholars.

When a fluid spouts from an orifice in a vessel, Castelli saw that the velocity of efflux depends on the depth of the orifice below the

« AnteriorContinuar »