Imágenes de páginas
PDF
EPUB

have been mentioned, he and Lagrange treated the problems of the small vibrations of fluids, both inelastic and elastic;—a subject which leads, like the question of vibrating strings, to some subtle and abstruse considerations concerning the significations of the integrals of partial differential equations. Laplace also took up the subject of waves propagated along the surface of water; and deduced a very celebrated theory of the tides, in which he considered the ocean to be, not in equilibrium, as preceding writers had supposed, but agitated by a constant series of undulations, produced by the solar and lunar forces. The difficulty of such an investigation may be judged of from this, that Laplace, in order to carry it on, is obliged to assume a mechanical proposition, unproved, and only conjectured to be true; namely,' that, “in a system of bodies acted upon by forces which are periodical, the state of the system is periodical like the forces." Even with this assumption, various other arbitrary processes are requisite; and it appears still very doubtful whether Laplace's theory is either a better mechanical solution of the problem, or a nearer approximation to the laws of the phenomena, than that obtained by D. Bernoulli, following the views of Newton.

In most cases, the solutions of problems of hydrodynamics are not satisfactorily confirmed by the results of observation. Poisson and Cauchy have prosecuted the subject of waves, and have deduced very curious conclusions by a very recondite and profound analysis. The assumptions of the mathematician here do not represent the conditions of nature; the rules of theory, therefore, are not a good standard to which we may refer the aberrations of particular cases; and the laws which we obtain from experiment are very imperfectly illustrated by à priori calculation. The case of this department of knowledge, Hydrodynamics, is very peculiar; we have reached the highest point of the science, the laws of extreme simplicity and generality from which the phenomena flow; we cannot doubt that the ultimate principles which we have obtained are the true ones, and those which really apply to the facts; and yet we are far from being able to apply the principles to explain or find out the facts. In order to do this, we want, in addition to what we have, true and useful principles, intermediate between the highest and the lowest ;-between the extreme and almost barren generality of the laws of motion, and the endless varieties and inextricable complexity of fluid motions in special cases.

15 Méc. C. t. ii. p. 218.

The reason of this peculiarity in the science of Hydrodynamics appears to be, that its general principles were not discovered with reference to the science itself, but by extension from the sister science of the Mechanics of Solids; they were not obtained by ascending gradually from particulars to truths more and more general, respecting the motions of fluids; but were caught at once, by a perception that the parts of fluids are included in that range of generality which we are entitled to give to the supreme laws of motions of solids. Thus, Solid Dynamics and Fluid Dynamics resemble two edifices which have their highest apartment in common, and though we can explore every part of the former building, we have not yet succeeded in traversing the staircase of the latter, either from the top or from the bottom. If we had lived in a world in which there were no solid bodies, we should probably not have yet discovered the laws of motion; if we had lived in a world in which there were no fluids, we should have no idea how insufficient a complete possession of the general laws of motion may be, to give us a true knowledge of particular results.

14. Various General Mechanical Principles.-The generalized laws of motion, the points to which I have endeavored to conduct my history, include in them all other laws by which the motions of bodies can be regulated; and among such, several laws which had been discovered before the highest point of generalization was reached, and which thus served as stepping-stones to the ultimate principles. Such were, as we have seen, the Principles of the Conservation of vis viva, the Principle of the Conservation of the Motion of the Centre of Gravity, and the like. These principles may, of course, be deduced from our elementary laws, and were finally established by mathematicians on that footing. There are other principles which may be similarly demonstrated; among the rest, I may mention the Principle of the Conservation of areas, which extends to any number of bodies a law analogous to that which Kepler had observed, and Newton demonstrated, respecting the areas described by each planet round the sun. I may mention also, the Principle of the Immobility of the plane of maximum areas, a plane which is not disturbed by any mutual action of the parts of any system. The former of these principles was published about the same time by Euler, D. Bernoulli, and Darcy, under different forms, in 1746 and 1747; the latter by Laplace.

To these may be added a law, very celebrated in its time, and the occasion of an angry controversy, the Principle of least action. Mau

pertuis conceived that he could establish à priori, by theological arguments, that all mechanical changes must take place in the world so as to occasion the least possible quantity of action. In asserting this, it was proposed to measure the Action by the product of Velocity and Space; and this measure being adopted, the mathematicians, though they did not generally assent to Maupertuis' reasonings, found that his principle expressed a remarkable and useful truth, which might be established on known mechanical grounds.

15. Analytical Generality. Connection of Statics and Dynamics.— Before I quit this subject, it is important to remark the peculiar character which the science of Mechanics has now assumed, in consequence of the extreme analytical generality which has been given it. Symbols, and operations upon symbols, include the whole of the reasoner's task; and though the relations of space are the leading subjects in the science, the great analytical treatises upon it do not contain a single diagram. The Mécanique Analytique of Lagrange, of which the first edition appeared in 1788, is by far the most consummate example of this analytical generality. "The plan of this work," says the author, "is entirely new. I have proposed to myself to reduce the whole theory of this science, and the art of resolving the problems which it includes, to general formula, of which the simple development gives all the equations necessary for the solution of the problem."-"The reader will find no figures in the work. The methods which I deliver do not require either constructions, or geometrical or mechanical reasonings; but only algebraical operations, subject to a regular and uniform rule of proceeding." Thus this writer makes Mechanics a branch of Analysis; instead of making, as had previously been done, Analysis an implement of Mechanics." The transcendent generalizing genius of Lagrange, and his matchless analytical skill and elegance, have made this undertaking as successful as it is striking.

The mathematical reader is aware that the language of mathematical symbols is, in its nature, more general than the language of words: and that in this way truths, translated into symbols, often suggest their own generalizations. Something of this kind has happened in Mechanics. The same Formula expresses the general condition of Statics and that of Dynamics. The tendency to generalization which is thus introduced by analysis, makes mathematicians unwilling to acknowl

16 Lagrange himself terms Mechanics, "An Analytical Geometry of four dimensions." Besides the three co-ordinates which determine the place of a body in space, the time enters as a fourth co-ordinate. [Note by Littrow.]

edge a plurality of Mechanical principles; and in the most recent analytical treatises on the subject, all the doctrines are deduced from the single Law of Inertia. Indeed, if we identify Forces with the Velocities which produce them, and allow the Composition of Forces to be applicable to force so understood, it is easy to see that we can reduce the Laws of Motion to the Principles of Statics; and this conjunction, though it may not be considered as philosophically just, is verbally correct. If we thus multiply or extend the meanings of the term Force, we make our elementary principles simpler and fewer than before; and those persons, therefore, who are willing to assent to such a use of words, can thus obtain an additional generalization of dynamical principles; and this, as I have stated, has been adopted in several recent treatises. I shall not further discuss here how far this is a real advance in science.

Having thus rapidly gone through the history of Force and Attraction in the abstract, we return to the attempt to interpret the phenomena of the universe by the aid of these abstractions thus established.

But before we do so, we may make one remark on the history of this part of science. In consequence of the vast career into which the Doctrine of Motion has been drawn by the splendid problems proposed to it by Astronomy, the origin and starting-point of Mechanics, namely Machines, had almost been lost out of sight. Machines had become the smallest part of Mechanics, as Land-measuring had become the smallest part of Geometry. Yet the application of Mathematics to the doctrine of Machines has led, at all periods of the Science, and especially in our own time, to curious and valuable results. Some of these will be noticed in the Additions to this volume.

BOOK VII.

THE MECHANICAL SCIENCES.

(CONTINUED.)

HISTORY

OF

PHYSICAL ASTRONOMY.

« AnteriorContinuar »