Imágenes de páginas
PDF
EPUB

was led to investigate the subject, and was then again conducted, by another road, to the same law of the inverse square of the distance. This naturally turned his thoughts to his former speculations. Was there really no way of explaining the discrepancy which this law gave, when he attempted to reduce the moon's motion to the action of gravity? A scientific operation then recently completed, gave the explanation at once. He had been mistaken in the magnitude of the earth, and consequently in the distance of the moon, which is determined by measurements of which the earth's radius is the base. He had taken the common estimate, current among geographers and seamen, that sixty English miles are contained in one degree of latitude. But Picard, in 1670, had measured the length of a certain portion of the meridian in France, with far greater accuracy than had yet been attained; and this measure enabled Newton to repeat his calculations with these amended data. We may imagine the strong curiosity which he must have felt as to the result of these calculations. His former conjecture was now found to agree with the phenomena to a remarkable degree of precision. This conclusion, thus coming after long doubts and delays, and falling in with the other results of mechanical calculation for the solar system, gave a stamp from that moment to his opinions, and through him to those of the whole philo sophical world.

[2d Ed.] [Dr. Robison (Mechanical Philosophy, p. 288) says that Newton having become a member of the Royal Society, there learned the accurate measurement of the earth by Picard, differing very much from the estimation by which he had made his calculations in 1666. And M. Biot, in his Life of Newton, published in the Biographie Universelle, says, " According to conjecture, about the month of June, 1682, Newton being in London at a meeting of the Royal Society, mention was made of the new measure of a degree of the earth's surface, recently executed in France by Picard; and great praise was given to the care which had been employed in making this measure exact."

I had adopted this conjecture as a fact in my first edition; but it has been pointed out by Prof. Rigaud (Historical Essay on the First Publication of the Principia, 1838), that Picard's measurement was probably well known to the Fellows of the Royal Society as early as 1675, there being an account of the results of it given in the Philosophical Transactions for that year. Newton appears to have discovered the method of determining that a body might describe an ellipse when acted upon by a force residing in the focus, and varying

inversely as the square of the distance, in 1679, upon occasion of his correspondence with Hooke. In 1684, at Halley's request, he returned to the subject, and in February, 1685, there was inserted in the Register of the Royal Society a paper of Newton's (Isaaci Newtoni Proposi tiones de Motu) which contained some of the principal Propositions of the first two Books of the Principia. This paper, however, does not contain the Proposition "Lunam gravitare in terram," nor any of the other propositions of the third Book. The Principia was printed in 1686 and 7, apparently at the expense of Halley. On the 6th of April, 1687, the third Book was presented to the Royal Society.]

It does not appear, I think, that before Newton, philosophers in general had supposed that terrestrial gravity was the very force by which the moon's motions are produced. Men had, as we have seen, taken up the conception of such forces, and had probably called them gravity: but this was done only to explain, by analogy, what kind of forces they were, just as at other times they compared them with magnetism; and it did not imply that terrestrial gravity was a force which acted in the celestial spaces. After Newton had discovered that this was so, the application of the term "gravity" did undoubtedly convey such a suggestion; but we should err if we inferred from this coincidence of expression that the notion was commonly entertained before him. Thus Huyghens appears to use language which may be mistaken, when he says, that Borelli was of opinion that the primary planets were urged by "gravity" towards the sun, and the satellites towards the primaries. The notion of terrestrial gravity, as being actually a cosmical force, is foreign to all Borelli's speculations.' But Horrox, as early as 1635, appears to have entertained the true view on this subject, although vitiated by Keplerian errors concerning the connection between the rotation of the central body and its effect on the body which revolves about it. Thus he says, that the emanation of the earth carries a projected stone along with the motion of the earth, just in the same way as it carries the moon in her orbit; and that this force is greater on the stone than on the moon, because the distance is less.

The Proposition in which Newton has stated the discovery of which we are now speaking, is the fourth of his third Book: "That the moon gravitates to the earth, and by the force of gravity is perpetually de

• Cosmotheros, 1. 2. p. 720.

I have found no instance in which the word is so used by him.

Astronomia Kepleriana defensa et promota, cap. 2. See further on this subject in the Additions to this volume.

flected from a rectilinear motion, and retained in her orbit." The proof consists in the numerical calculation, of which he only gives the elements, and points out the method; but we may observe, that no small degree of knowledge of the way in which astronomers had obtained these elements, and judgment in selecting among them, were necessary: thus, the mean distance of the moon had been made as little as fifty-six and a half semidiameters of the earth by Tycho, and as much as sixty-two and a half by Kircher: Newton gives good reasons for adopting sixty-one.

The term "gravity," and the expression "to gravitate," which, as we have just seen, Newton uses of the moon, were to receive a still wider application in consequence of his discoveries; but in order to make this extension clearer, we consider it as a separate step.

4. Mutual Attraction of all the Celestial Bodies.-If the preceding parts of the discovery of gravitation were comparatively easy to conjecture, and difficult to prove, this was much more the case with the part of which we have now to speak, the attraction of other bodies, besides the central ones, upon the planets and satellites. If the mathematical calculation of the unmixed effect of a central force required transcendent talents, how much must the difficulty be increased, when other influences prevented those first results from being accurately ver ified, while the deviations from accuracy were far more complex than the original action! If it had not been that these deviations, though surprisingly numerous and complicated in their nature, were very small in their quantity, it would have been impossible for the intellect of man to deal with the subject; as it was, the struggle with its difficulties is even now a matter of wonder.

The conjecture that there is some mutual action of the planets, had been put forth by Hooke in his Attempt to prove the Motion of the Earth (1674). It followed, he said, from his doctrine, that not only the sun and moon act upon the course and motion of the earth, but that Mercury, Venus, Mars, Jupiter, and Saturn, have also, by their attractive power, a considerable influence upon the motion of the earth, and the earth in like manner powerfully affects the motions of those bodies. And Borelli, in attempting to form "theories" of the satellites of Jupiter, had seen, though dimly and confusedly, the probability that the sun would disturb the motions of these bodies. Thus he says (cap. 14), "How can we believe that the Medicean globes are not, like other planets, impelled with a greater velocity when they approach the sun and thus they are acted upon by two moving forces, one of

which produces their proper revolution about Jupiter, the other regulates their motion round the sun." And in another place (cap. 20), he attempts to show an effect of this principle upon the inclination of the orbit; though, as might be expected, without any real result.

The case which most obviously suggests the notion that the sun exerts a power to disturb the motions of secondary planets about primary ones, might seem to be our own moon; for the great inequalities which had hitherto been discovered, had all, except the first, or elliptical anomaly, a reference to the position of the sun. Nevertheless, I do not know that any one had attempted thus to explain the curiously irregular course of the earth's attendant. To calculate, from the disturbing agency, the amount of the irregularities, was a problem which could not, at any former period, have been dreamt of as likely to be at any time within the verge of human power.

Newton both made the step of inferring that there were such forces, and, to a very great extent, calculated the effects of them. The inference is made on mechanical principles, in the sixth Theorem of the third Book of the Principia;-that the moon is attracted by the sun, as the earth is;-that the satellites of Jupiter and Saturn are attracted as the primaries are; in the same manner, and with the same forces. If this were not so, it is shown that these attendant bodies could not accompany the principal ones in the regular manner in which they do. All those bodies at equal distances from the sun would be equally attracted.

But the complexity which must occur in tracing the results of this principle will easily be seen. The satellite and the primary, though nearly at the same distance, and in the same direction, from the sun, are not exactly so. Moreover the difference of the distances and of the directions is perpetually changing; and if the motion of the satel lite be elliptical, the cycle of change is long and intricate: on this account alone the effects of the sun's action will inevitably follow cycles as long and as perplexed as those of the positions. But on another account they will be still more complicated; for in the continued. action of a force, the effect which takes place at first, modifies and alters the effect afterwards. The result at any moment is the sum of the results in preceding instants: and since the terms, in this series of instantaneous effects, follow very complex rules, the sums of such series will be, it might be expected, utterly incapable of being reduced to any manageable degree of simplicity.

It certainly does not appear that any one but Newton could make

any impression on this problem, or course of problems. No one for sixty years after the publication of the Principia, and, with Newton's methods, no one up to the present day, had added any thing of any value to his deductions. We know that he calculated all the principal lunar inequalities; in many of the cases, he has given us his processes; in others, only his results. But who has presented, in his beautiful geometry, or deduced from his simple principles, any of the inequalities which he left untouched? The ponderous instrument of synthesis, so effective in his hands, has never since been grasped by one who could use it for such purposes; and we gaze at it with admiring curiosity, as on some gigantic implement of war, which stands idle among the memorials of ancient days, and makes us wonder what manner of man he was who could wield as a weapon what we can hardly lift as a burden.

It is not necessary to point out in detail the sagacity and skill which mark this part of the Principia. The mode in which the author obtains the effect of a disturbing force in producing a motion of the apse of an elliptical orbit (the ninth Section of the first Book), has always been admired for its ingenuity and elegance. The general statement of the nature of the principal inequalities produced by the sun in the motion of a satellite, given in the sixty-sixth Proposition, is, even yet, one of the best explanations of such action; and the calculations of the quantity of the effects in the third Book, for instance, the variation of the moon, the motion of the nodes and its inequalities, the change of inclination of the orbit,-are full of beautiful and efficacious artifices. But Newton's inventive faculty was exercised to an extent greater than these published investigations show. In several cases he has suppressed the demonstration of his method, and given us the result only; either from haste or from mere weariness, which might well overtake one who, while he was struggling with facts and numbers, with difficulties of conception and practice, was aiming also at that geometrical elegance of exposition,, which he considered as alone fit for the public eye. Thus, in stating the effect of the eccentricity of the moon's orbit upon the motion of the apogee, he says, "The computations, as too intricate and embarrassed with approximations, I do not choose to introduce."

The computations of the theoretical motion of the moon being thus difficult, and its irregularities numerous and complex, we may ask,

Schol. to Prop. 85, first edit.

« AnteriorContinuar »