Imágenes de páginas
PDF
EPUB

NATURE OF THE MINER'S WORK.

343

to convert the blocks into grain-tin, they are heated until they become brittle, and made to fall from a considerable height in a semi-fluid state, thus producing an agglomerated mass of elongated grains.

The number of persons that find occupation in and about the Cornish and Devonian tin mines may amount to about 20,000. The wages are, on an average, much inferior to those of the pitmen and pitlads in the northern coal-fields; but, on the other hand, the Cornish miner is exempt from many evils to which the northern miners are subject. He has not to fear the fatal fire-damp, and can sit at ease and hear or read of explosions that have destroyed hundreds in a few minutes.

His intellectual superiority to the agricultural labourer may be at once inferred from the nature of his pursuits. The latter plods on through life like a mere human machine, and, as he is never thrown on his own resources in the progress of his monotonous occupations, his stock of ideas remains scanty and confined. But the Cornish miner is the reverse of all this. He is engaged mostly in work requiring the exercise of the mind. He is constantly taking a new 'pitch' in a new situation, where his judgment is called into action. His wages are not the stinted recompense of half-emancipated serfdom; but they arise from contract, and depend upon some degree of skill and knowledge. In fact the chances of the lode keep expectation constantly awake, and thus :—

'Hope reigns triumphant in the miner's breast,
Who never is, but always to be blest.'

*

If he is at all imaginative, golden dreams enliven the darkness of his underground labour. He is in fact a kind of subterranean stock-jobber, and settling day' is as anxious a

*The lodes in the Cornish tin and copper mines are divided by shafts and galleries into rectangular compartments, called 'pitches.' These are open to the inspection of all the labouring miners in the county, and, by an admirable system, each pitch' is let by public competition, for two months, to two or four or more miners, who may work it as they choose. These men agree to break the ores, wheel them, raise them to the surface, and bring them (if desired) into a fit condition for the market. The ores so raised are sold every week, and the miner immediately receives his tribute, or percentage for which he agreed to work. The sinking of shafts and the driving of levels is paid by tut-work, or task work, at so much per fathom.

time for the humble tributer at the Land's End as for the bold speculator of the Stock Exchange.

When not exhausted after his hard day's labour, the miner frequently cultivates a small patch of land. Many have tolerable gardens, and some are able to perform their own carpentry, while, if near the coast, others are expert fisher

men.

CHAPTER XXVIII.

IRON.

Iron the most valuable of Metals-Its wide Diffusion over the Earth-Meteoric Iron-Iron very anciently known-Extension of its Uses in Modern TimesBritish Iron Production-Causes of its Rise-Hot Blast-Puddling-Coal-smelting-The Cleveland District-Rapid Rise of Middlesborough-British Iron Ores -Production of Foreign Countries-The Magnetic Mountain in Russia--The Eisenerz Mountain in Styria-Dannemora—Elba—The United States—The Pilot Knob-The Cerro del Mercado.

A

S an instrument of civilisation iron is the most valuable and the most indispensable of all mineral substances. Even coal is of inferior importance to the welfare of mankind, for iron may be obtained without its aid, while coal could not possibly be extracted from the bowels of the earth without the assistance of iron. Hard and malleable, tenacious and ductile, endowed with the singular property of welding, which is found in no other metal except platinum, and acquiring new qualities by its conversion into steel, it accommodates itself to all our wants and even to our caprices, so that no other metal has such various and extensive uses. It clothes our war ships with a case of impenetrable armour, and sets the finest watch in motion; it provides the sempstress with her needle, and guides the mariner over the ocean; it furnishes the husbandman with his ploughshare, and the soldier with his sword; it concentrates in the steam-engine the sinews of a thousand horses, and mocks on the railroad the fleetness of the swiftest courser. It is, in one word, the embodiment of power, the chief agent of all social progress.

'Were the use of iron lost among us,' says the illustrious Locke, 'we should, in a few ages, be unavoidably reduced to the wants and ignorance of the ancient savage Americans;'

nor will this view be deemed extravagant if we reflect that, but for iron, man would be virtually without tools, since it is almost the only metal capable of taking a sharp edge and keeping it.

The bounty of the Creator, which bestowed on man this inestimable gift, has also provided for its wider diffusion over the earth than is the case with any other of the useful metals. Few mineral substances or stones are without an admixture of it. Sands, clays, the waters of rivers or springs, are scarcely ever perfectly free from iron, while animal and vegetable substances likewise afford it in the residues which they leave after incineration. Its mines may truly be said to be inexhaustible; in some its ores occur in compact masses of extraordinary magnitude, in others they spread in vast strata or extend in veins of a prodigious length.

Yet, in spite of its wide diffusion, the extraction of iron from its ores generally requires so much metallurgic skill that its use would probably have remained undiscovered by the ancients if Providence had not in a wonderful manner revealed, as it were, its existence to mankind.

All iron of a terrestrial origin is combined with other substances, which conceal its true nature from the uninitiated eye, and from which it is with difficulty separated; but here and there, scattered over the surface of the earth, are found solitary masses of metallic iron, which, having fallen from the skies, may truly be called erratic boulders from another world. The idea of their having dropped from the clouds was long ridiculed by the learned; but their fall has been so often observed, and so circumstantially recorded in the annals of almost every age, that scepticism has been obliged to yield to the weight of accumulated evidence, and science no longer doubts their meteoric origin. Nothing can be more interesting than these mysterious heralds from the distant fields of ether, which, after wandering through space for countless ages, have at length been brought within the sphere of attraction of our planet, and, alighting on its surface, afford us tangible proofs that many of the substances of which our earth is composed-iron, nickel, silex, &c., &c.-exist beyond its limits, and that most probably our

EARLY KNOWLEDGE OF IRON.

347

whole solar system is constructed of the same materials as our globe.

But meteoric iron-which sometimes occurs in enormous masses *—is more than a mere object of curiosity, for it has had a most important influence on the progress of the human race. On such a mass undoubtedly the first smith exercised his skill, and it was this which first made mankind acquainted with a metal more valuable than copper or gold.

As we see from the example of the Esquimaux, whom Captain Ross (1819) found in possession of knives and harpoons which they had made from masses of meteoric iron, the discovery was probably made at a very remote period, while man was still in the savage state; but iron having once become known, the desire to obtain it in larger quantities from other sources naturally grew with the progress of civilisation, and gradually led to the knowledge of its ores and of the art of utilising them. Thus there can hardly be a doubt that iron-smelting was practised long before historic times. In India and China the origin of its use loses itself in the remotest antiquity; and the imposing monuments of ancient Egypt, many of which are at least five thousand years old, could not possibly have been erected without the aid of iron. In the Book of Deuteronomy (iv. 20) the land of Egypt is compared to an ironfurnace-a figurative expression which shows that even at that early period iron-smelting must have been a wellknown branch of industry.

The iron weapons found in the lacustrine dwellings of Switzerland likewise point to a very ancient use of iron in Central Europe, no less than the fact mentioned by Cæsar, that during the siege of Avaricum (Bourges) the works erected by the Romans for taking the town were repeatedly destroyed by the subterranean galleries of the besieged, who, as the conqueror relates, were accustomed to such underground labour from their habitually working in iron-mines, an industry which, to judge from this passage, must even then have been of ancient date in Gaul.

* The weight of the mass found at Otumpa, in the Gran Chaco Gualamba, in South America, by Don Rubin de Celis (1783) was estimated at about fifteen tons. A piece from this mass, weighing 1,400 pounds, is now in the British Museum.

« AnteriorContinuar »