Imágenes de páginas
PDF
EPUB

renders the pits extremely unhealthy, this nomadic population melts away like chaff before the wind. Yet, in spite of the rough mode of extraction which prevails in the American lead country, the mines of Iowa, Wisconsin, and Illinois yielded about 20,000 tons of lead in 1866, and their produce is constantly increasing.

In all lead mines, the galena often occurs in pieces so large that they do not require to be separated from the veinstone by the processes of stamping and washing. They are then called pure ores, and the most simple preparation is sufficient to prepare them for the smelting furnace. When the ore has been picked and so far prepared, it is first roasted or heated in a reverberatory furnace, an operation which causes the oxygen of the air to combine with the two elementary bodies of which galena is composed. After undergoing this chemical change, the ore is now mixed with coke, charcoal, or peat, and reduced by smelting in a small blast furnace of a peculiar kind. Under the influence of heat, the carbon of the coal, uniting with the oxygen of the ore, flies off in the form of carbonic acid gas, while the metallic lead, which in the finer ores amounts to 70 or 80 per cent., sinks to the bottom of the furnace. Almost all the varieties of galena contain a greater or less proportion of silver, which it is often found worth while to separate from them. This process is at present effected according to a most ingenious method, founded on the circumstance first noticed in the year 1829, by the late H. L. Pattinson, of Newcastle-on-Tyne, that when lead containing silver is melted in a suitable vessel, afterwards slowly allowed to cool, and at the same time kept constantly stirred at a certain temperature near the melting point of lead, crystals begin to form. These, as rapidly as they are produced, sink to the bottom, and on being removed are found to contain much less silver than the lead originally melted. The still fluid portion, from which the crystals have been removed, will at the same time be proportionally enriched. By repeated meltings and crystallisations in a series of cast-iron pots with fire-places beneath, the workman is thus able to deprive almost entirely of its silver by far the largest portion of the lead operated upon, while the remainder becomes an

APPLICATION OF SCIENCE TO MINING.

369

exceedingly rich alloy of both metals, so as to contain fifty times its original proportion of silver. This rich lead is subsequently exposed in a refining furnace to a strong blast of air at a high temperature, fresh supplies of lead being constantly introduced as the operation proceeds. By this means the lead becomes rapidly oxidized and converted into litharge, which partly runs off in the fluid state, and is partly (about 10 per cent.) lost by sublimation, while the silver forms a cake at the bottom of the cupel. The brightening of the silver, which lustrously shines forth at the moment of the separation of the last traces of lead, indicates the precise period at which the operation should be ended, and the blast is then turned off and the fire removed from the grate. Before the introduction of Pattinson's ingenious process, the separation of the silver from the lead was attended with a much greater loss of the latter metal, as greater quantities had to be cupelled to effect the same result. The economy obtained amounts to no less than 98 per cent.; for where formerly 100 cwt. of lead were lost by sublimation, the same quantity of silver is now obtained with a loss of no more than 2 cwt., and at the same time with a considerable saving of fuel.

Ores very poor in silver, as for instance those of Alston Moor or Derbyshire, which formerly could not be profitably cupelled, are now advantageously treated by the Pattinson process. This is but one example of the valuable practical results which may be obtained from a single scientific discovery. But chemistry has introduced thousands of similar technical improvements in almost all branches of manufacturing industry, and were we to add together the profits thus obtained, we should find that a great part of our wealth is due to the laboratory.

BB

CHAPTER XXX.

MERCURY.

Not considered as a true Metal by the Ancients-Its Properties and UsesAlmaden-Formerly worked by Convicts-Diseases of the Miners-Idria-Its Discovery Conflagration of the Mine - Its Produce-Huancavelica-New Almaden.

A

MONG the metals known to antiquity mercury was the last discovered. It is mentioned neither in the Bible nor in Homer, who accurately, though briefly, describes the characters and uses of all the other ancient metals; but we learn from the works of Aristotle that its discovery must have preceded the times of Alexander the Great.

From its always remaining fluid in the temperate climates of the earth, it was, however, not considered as a true metal; for the ancients had no means of ascertaining that at the low temperature of-39° Fahr., it becomes malleable and assumes the solid form. The Greeks called it Hydrargyros or waterilver, from its fluidity and argentine colour; the Romans, 'argentum vivum,' or live silver, from which our 'quicksilver' has been derived, and in the Middle Ages the alchemists gave it the planetary name of Mercury, which has been generally adopted in modern scientific language.

At a very early age cinnabar (sulphide of mercury), the beautiful scarlet ore from which it is chiefly obtained, was employed by the ancients as a colouring material for imparting a florid complexion to triumphant generals or to guests at the festive board. The extent to which this cosmetic was used may be inferred from the facts mentioned by Pliny, that the Greeks imported red cinnabar from Almaden 700 years before the Christian era, and that Rome in his time received 700,000 pounds from the same mines.

[blocks in formation]

As the alchemists considered quicksilver as the fittest substance for transmutation into gold, it became the subject of innumerable experiments; and though these manipulations had not the desired effect, they accidentally led to the discovery of several of its combinations, which soon became known as powerful medicines. But it was reserved for modern times to appreciate and understand the full importance of mercury, and to extend the field of its utility to a variety of uses unknown to former ages.

Alloyed with tin-foil, it forms the reflecting surface of looking-glasses; and by its ready solution of gold and silver, and subsequent dissipation by a moderate heat, it becomes the great instrument of the arts of gilding and silvering copper and brass. The same property makes it available in extracting these precious metals from their ores. To science it is a substance of paramount value. Its great density, and its regular rate of extension and contraction by increase and diminution of temperature, give it the preference over all liquids for filling barometer and thermometer tubes, so that without mercury we should know but little indeed about the laws of caloric and of atmospherical pressure. In chemistry it furnishes the only means of collecting and manipulating, in the pneumatic trough, such gaseous bodies as are condensible over water. To its aid, in this respect, the modern advancement of chemical discovery is pre-eminently due, and without its assistance many a branch of industry which now greatly adds to the wealth of the nation could never have existed.

Mercury does not rank among those metals which are copiously disseminated over the surface of the earth. Considerable deposits or veins of even its commonest and most abundant ores (red cinnabar; hepatic cinnabar) are confined to a few spots, and all Europe possesses but two important quicksilver mines-at Almaden in Spain, and Idria in Carniola.

The Sierra Morena or the Black Mountains in the Iberian Peninsula, so well known as the scene of the exploits of Don Quixote, are no less renowned in the mining world for their subterranean riches, among which the famous quicksilver mines of Almaden del Azogue hold a conspicuous rank. This small town of about 10,000 inhabitants is situated on the northern border of the above-mentioned mountain chain,

at the south-western extremity of the province of New Castile, and, unlike most other Spanish cities, affords the pleasing sight of well-built houses and clean and regular streets. As is generally the case in mining districts, the neighbourhood is sterile, but picturesque, and from the neighbouring mountains magnificent prospects open on every side.

The mines of Almaden, after having been the property of the religious knights of Calatrava, who had assisted in expelling the Moors, were farmed off to the Fuggers, the celebrated merchant princes of Augsburg, whose descendants still rank among the high aristocracy of Germany. Afterwards, from the date of 1645 till the present time, they have either been worked on Government account or farmed off to private companies. A visit to these celebrated mines is highly interesting. A spacious tunnel or gallery, completely walled with solid masonry, leads into the bosom of the mountain and branches out at its extremity into several galleries hewn in the slate which forms the matrix of the vein. One of these galleries conducts to the Boveda de Santa Clara, a vast circular hall in which formerly stood a horse-gin, for raising the ore to the surface. At present, however, this work is performed through a shaft which descends to the lowest level of the mine. From another gallery convenient stairs lead down to the first working level of the mine, and thence short ladders to the deeper stories. The shafts are wide, the galleries high enough to allow one to walk upright through them. The upper stories are almost thoroughly dry, the lower ones humid; the water, however, is easily removed by hand-pumps, which raise it from story to story into a large subterranean reservoir, emptied once a week by a steam-engine of fifty-four horse-power. The veins are so extremely rich that, though they have been worked pretty constantly during so many centuries, the mines have hardly reached the depth of 1,140 feet. The lode actually under exploration is from fourteen to sixteen yards thick, and it becomes thicker still at the crossing of the veins. Its present annual produce amounts to about 80,000 cwt. of pure mercury. The ore presents a beautiful sight in the galleries where it is worked, on account of the dark red

« AnteriorContinuar »